"""
This module provides functions for spherical geometry calculations.
"""
import warnings
import numpy as np
import xarray as xr
EARTH_RADIUS_METERS = 6.3781e6
EARTH_DAY_SECONDS = 86164.091
EARTH_ROTATION_RATE = 2 * np.pi / EARTH_DAY_SECONDS
[docs]
def cumulative_distance(
longitude: list | np.ndarray | xr.DataArray,
latitude: list | np.ndarray | xr.DataArray,
) -> np.ndarray:
"""Return the cumulative great circle distance in meters along a sequence of geographical locations.
Parameters
----------
latitude : array-like
Latitude sequence, in degrees.
longitude : array-like
Longitude sequence, in degrees.
Returns
-------
out : np.ndarray
Cumulative distance.
See Also
--------
:func:`distance`
Examples
--------
Calculate the cumulative distance in meters along a path of three points:
>>> cumulative_distance(np.array([0, 1, 2]), np.array([0, 1, 2]))
array([ 0. , 157424.62387233, 314825.27182116])
"""
return np.cumsum(
np.concatenate(
(
[0],
distance(latitude[0:-1], longitude[0:-1], latitude[1:], longitude[1:]),
)
)
)
[docs]
def distance(
lon1: float | list | np.ndarray | xr.DataArray,
lat1: float | list | np.ndarray | xr.DataArray,
lon2: float | list | np.ndarray | xr.DataArray,
lat2: float | list | np.ndarray | xr.DataArray,
) -> float | np.ndarray:
"""Return elementwise great circle distance in meters between one or more
points from arrays of their latitudes and longitudes, using the Haversine
formula.
d = 2⋅r⋅asin √[sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)]
where (φ, λ) is (lat, lon) in radians and r is the radius of the sphere in
meters.
Parameters
----------
lon1 : np.ndarray
Longitudes of the first set of points, in degrees
lat1 : np.ndarray
Latitudes of the first set of points, in degrees
lon2 : np.ndarray
Longitudes of the second set of points, in degrees
lat2 : np.ndarray
Latitudes of the second set of points, in degrees
Returns
-------
out : np.ndarray
Great circle distance
Examples
--------
Calculate the distance of one degree longitude on the equator:
>>> distance(0, 0, 0, 1)
111318.84502145034
Calculate the distance of one degree longitude at 45-degrees North latitude:
>>> distance(0, 45, 1, 45)
78713.81064540472
You can also pass array-like inputs to calculate an array of distances:
>>> distance([0, 0], [0, 45], [0, 1], [1, 45])
array([111318.84502145, 78713.8106454 ])
"""
# Input coordinates are in degrees; convert to radians.
# If any of the input arrays are xr.DataArray, extract the values first
# because Xarray enforces alignment between coordinates.
if isinstance(lat1, xr.DataArray):
lat1_rad = np.deg2rad(lat1.values)
else:
lat1_rad = np.deg2rad(lat1)
if isinstance(lon1, xr.DataArray):
lon1_rad = np.deg2rad(lon1.values)
else:
lon1_rad = np.deg2rad(lon1)
if isinstance(lat2, xr.DataArray):
lat2_rad = np.deg2rad(lat2.values)
else:
lat2_rad = np.deg2rad(lat2)
if isinstance(lon2, xr.DataArray):
lon2_rad = np.deg2rad(lon2.values)
else:
lon2_rad = np.deg2rad(lon2)
dlat = lat2_rad - lat1_rad
dlon = lon2_rad - lon1_rad
h = (
np.sin(0.5 * dlat) ** 2
+ np.cos(lat1_rad) * np.cos(lat2_rad) * np.sin(0.5 * dlon) ** 2
)
return 2 * np.arcsin(np.sqrt(h)) * EARTH_RADIUS_METERS
[docs]
def bearing(
lon1: float | list | np.ndarray | xr.DataArray,
lat1: float | list | np.ndarray | xr.DataArray,
lon2: float | list | np.ndarray | xr.DataArray,
lat2: float | list | np.ndarray | xr.DataArray,
) -> float | np.ndarray:
"""Return elementwise initial (forward) bearing in radians from arrays of
latitude and longitude in degrees, based on the spherical law of cosines.
The formula is:
θ = atan2(cos φ1 ⋅ sin φ2 - sin φ1 ⋅ cos φ2 ⋅ cos Δλ, sin Δλ ⋅ cos φ2)
where (φ, λ) is (lat, lon) and θ is bearing, all in radians.
Bearing is defined as zero toward East and positive counterclockwise.
Parameters
----------
lon1 : float or array-like
Longitudes of the first set of points, in degrees
lat1 : float or array-like
Latitudes of the first set of points, in degrees
lon2 : float or array-like
Longitudes of the second set of points, in degrees
lat2 : float or array-like
Latitudes of the second set of points, in degrees
Returns
-------
theta : float or np.ndarray
Bearing angles in radians
Examples
--------
Calculate the bearing of one degree longitude on the equator:
>>> bearing(0, 0, 1, 0)
0.0
Calculate the bearing of 10 degrees longitude at 45-degrees North latitude:
>>> bearing(0, 45, 10, 45)
0.06178508761798218
"""
# Input coordinates are in degrees; convert to radians.
# If any of the input arrays are xr.DataArray, extract the values first
# because Xarray enforces alignment between coordinates.
if isinstance(lat1, xr.DataArray):
lat1_rad = np.deg2rad(lat1.values)
else:
lat1_rad = np.deg2rad(lat1)
if isinstance(lon1, xr.DataArray):
lon1_rad = np.deg2rad(lon1.values)
else:
lon1_rad = np.deg2rad(lon1)
if isinstance(lat2, xr.DataArray):
lat2_rad = np.deg2rad(lat2.values)
else:
lat2_rad = np.deg2rad(lat2)
if isinstance(lon2, xr.DataArray):
lon2_rad = np.deg2rad(lon2.values)
else:
lon2_rad = np.deg2rad(lon2)
dlon = lon2_rad - lon1_rad
theta = np.arctan2(
np.cos(lat1_rad) * np.sin(lat2_rad)
- np.sin(lat1_rad) * np.cos(lat2_rad) * np.cos(dlon),
np.sin(dlon) * np.cos(lat2_rad),
)
return theta
[docs]
def position_from_distance_and_bearing(
lon: float, lat: float, distance: float, bearing: float
) -> tuple[float, float]:
"""Return elementwise new position in degrees from arrays of latitude and
longitude in degrees, distance in meters, and bearing in radians, based on
the spherical law of cosines.
The formula is:
φ2 = asin( sin φ1 ⋅ cos δ + cos φ1 ⋅ sin δ ⋅ cos θ )
λ2 = λ1 + atan2( sin θ ⋅ sin δ ⋅ cos φ1, cos δ − sin φ1 ⋅ sin φ2 )
where (φ, λ) is (lat, lon) and θ is bearing, all in radians.
Bearing is defined as zero toward East and positive counterclockwise.
Parameters
----------
lon : float
Longitude of the first set of points, in degrees
lat : float
Latitude of the first set of points, in degrees
distance : array_like
Distance in meters
bearing : array_like
Bearing angles in radians
Returns
-------
lon2 : array_like
Latitudes of the second set of points, in degrees, in the range [-90, 90]
lat2 : array_like
Longitudes of the second set of points, in degrees, in the range [-180, 180]
Examples
--------
Calculate the position of one degree longitude distance on the equator:
>>> position_from_distance_and_bearing(0, 0, 111318.84502145034, 0)
(1.0, 0.0)
Calculate the position of one degree latitude distance from 45 degrees North latitude:
>>> position_from_distance_and_bearing(0, 45, 111318.84502145034, np.pi / 2)
(8.81429402840006e-17, 45.99999999999999)
"""
lat_rad = np.deg2rad(lat)
lon_rad = np.deg2rad(lon)
distance_rad = np.asarray(distance) / EARTH_RADIUS_METERS
lat2_rad = np.arcsin(
np.sin(lat_rad) * np.cos(distance_rad)
+ np.cos(lat_rad) * np.sin(distance_rad) * np.sin(bearing)
)
lon2_rad = lon_rad + np.arctan2(
np.cos(bearing) * np.sin(distance_rad) * np.cos(lat_rad),
np.cos(distance_rad) - np.sin(lat_rad) * np.sin(lat2_rad),
)
return np.rad2deg(lon2_rad), np.rad2deg(lat2_rad)
[docs]
def recast_lon(lon: np.ndarray, lon0: float = -180) -> np.ndarray:
"""Recast (convert) longitude values to a selected range of 360 degrees
starting from ``lon0``.
Parameters
----------
lon : np.ndarray or float
An N-d array of longitudes in degrees
lon0 : float, optional
Starting longitude of the recasted range (default -180).
Returns
-------
np.ndarray or float
Converted longitudes in the range `[lon0, lon0+360[`
Examples
--------
By default, ``recast_lon`` converts longitude values to the range
`[-180, 180[`:
>>> recast_lon(200)
-160
>>> recast_lon(180)
-180
The range of the output longitude is controlled by ``lon0``.
For example, with ``lon0 = 0``, the longitude values are converted to the
range `[0, 360[`.
>>> recast_lon(200, -180)
-160
With ``lon0 = 20``, longitude values are converted to range `[20, 380]`,
which can be useful to avoid cutting the major ocean basins.
>>> recast_lon(10, 20)
370
See Also
--------
:func:`recast_lon360`, :func:`recast_lon180`
"""
return np.mod(lon - lon0, 360) + lon0
[docs]
def recast_lon360(lon: np.ndarray) -> np.ndarray:
"""Recast (convert) longitude values to the range `[0, 360[`.
This is a convenience wrapper around :func:`recast_lon` with ``lon0 = 0``.
Parameters
----------
lon : np.ndarray
An N-d array of longitudes in degrees
Returns
-------
np.ndarray
Converted longitudes in the range `[0, 360[`
Examples
--------
>>> recast_lon360(200)
200
>>> recast_lon360(-200)
160
See Also
--------
:func:`recast_lon`, :func:`recast_lon180`
"""
return recast_lon(lon, 0)
[docs]
def recast_lon180(lon: np.ndarray) -> np.ndarray:
"""Recast (convert) longitude values to the range `[-180, 180[`.
This is a convenience wrapper around :func:`recast_lon` with ``lon0 = -180``.
Parameters
----------
lon : np.ndarray
An N-d array of longitudes in degrees
Returns
-------
np.ndarray
Converted longitudes in the range `[-180, 180[`
Examples
--------
>>> recast_lon180(200)
-160
>>> recast_lon180(-200)
160
See Also
--------
:func:`recast_lon`, :func:`recast_lon360`
"""
return recast_lon(lon, -180)
[docs]
def plane_to_sphere(
x: np.ndarray, y: np.ndarray, lon_origin: float = 0, lat_origin: float = 0
) -> tuple[np.ndarray, np.ndarray]:
"""Convert Cartesian coordinates on a plane to spherical coordinates.
The arrays of input zonal and meridional displacements ``x`` and ``y`` are
assumed to follow a contiguous trajectory. The spherical coordinate of each
successive point is determined by following a great circle path from the
previous point. The spherical coordinate of the first point is determined by
following a great circle path from the origin, by default (0, 0).
The output arrays have the same floating-point output type as the input.
If projecting multiple trajectories onto the same plane, use
:func:`apply_ragged` for highest accuracy.
Parameters
----------
x : np.ndarray
An N-d array of zonal displacements in meters
y : np.ndarray
An N-d array of meridional displacements in meters
lon_origin : float, optional
Origin longitude of the tangent plane in degrees, default 0
lat_origin : float, optional
Origin latitude of the tangent plane in degrees, default 0
Returns
-------
lon : np.ndarray
Longitude in degrees
lat : np.ndarray
Latitude in degrees
Examples
--------
>>> plane_to_sphere(np.array([0., 0.]), np.array([0., 1000.]))
(array([0.00000000e+00, 5.50062664e-19]), array([0. , 0.0089832]))
You can also specify an origin longitude and latitude:
>>> plane_to_sphere(np.array([0., 0.]), np.array([0., 1000.]), lon_origin=1, lat_origin=0)
(array([1., 1.]), array([0. , 0.0089832]))
Raises
------
AttributeError
If ``x`` and ``y`` are not NumPy arrays
See Also
--------
:func:`sphere_to_plane`
"""
lon = np.empty_like(x)
lat = np.empty_like(y)
# Cartesian distances between each point
dx = np.diff(x, prepend=0)
dy = np.diff(y, prepend=0)
distances = np.sqrt(dx**2 + dy**2)
bearings = np.arctan2(dy, dx)
# Compute spherical coordinates following great circles between each
# successive point.
lon[..., 0], lat[..., 0] = position_from_distance_and_bearing(
lon_origin, lat_origin, distances[..., 0], bearings[..., 0]
)
for n in range(1, lon.shape[-1]):
lon[..., n], lat[..., n] = position_from_distance_and_bearing(
lon[..., n - 1], lat[..., n - 1], distances[..., n], bearings[..., n]
)
return lon, lat
[docs]
def sphere_to_plane(
lon: np.ndarray, lat: np.ndarray, lon_origin: float = 0, lat_origin: float = 0
) -> tuple[np.ndarray, np.ndarray]:
"""Convert spherical coordinates to a tangent (Cartesian) plane.
The arrays of input longitudes and latitudes are assumed to be following
a contiguous trajectory. The Cartesian coordinate of each successive point
is determined by following a great circle path from the previous point.
The Cartesian coordinate of the first point is determined by following a
great circle path from the origin, by default (0, 0).
The output arrays have the same floating-point output type as the input.
If projecting multiple trajectories onto the same plane, use
:func:`apply_ragged` for highest accuracy.
Parameters
----------
lon : np.ndarray
An N-d array of longitudes in degrees
lat : np.ndarray
An N-d array of latitudes in degrees
lon_origin : float, optional
Origin longitude of the tangent plane in degrees, default 0
lat_origin : float, optional
Origin latitude of the tangent plane in degrees, default 0
Returns
-------
x : np.ndarray
x-coordinates on the tangent plane
y : np.ndarray
y-coordinates on the tangent plane
Examples
--------
>>> sphere_to_plane(np.array([0., 1.]), np.array([0., 0.]))
(array([ 0. , 111318.84502145]), array([0., 0.]))
You can also specify an origin longitude and latitude:
>>> sphere_to_plane(np.array([0., 1.]), np.array([0., 0.]), lon_origin=1, lat_origin=0)
(array([-111318.84502145, 0. ]),
array([1.36326267e-11, 1.36326267e-11]))
Raises
------
AttributeError
If ``lon`` and ``lat`` are not NumPy arrays
See Also
--------
:func:`plane_to_sphere`
"""
x = np.empty_like(lon)
y = np.empty_like(lat)
distances = np.empty_like(x)
bearings = np.empty_like(x)
# Distance and bearing of the starting point relative to the origin
distances[0] = distance(lon_origin, lat_origin, lon[..., 0], lat[..., 0])
bearings[0] = bearing(lon_origin, lat_origin, lon[..., 0], lat[..., 0])
# Distance and bearing of the remaining points
distances[1:] = distance(lon[..., :-1], lat[..., :-1], lon[..., 1:], lat[..., 1:])
bearings[1:] = bearing(lon[..., :-1], lat[..., :-1], lon[..., 1:], lat[..., 1:])
dx = distances * np.cos(bearings)
dy = distances * np.sin(bearings)
x[..., :] = np.cumsum(dx, axis=-1)
y[..., :] = np.cumsum(dy, axis=-1)
return x, y
[docs]
def spherical_to_cartesian(
lon: float | list | np.ndarray | xr.DataArray,
lat: float | list | np.ndarray | xr.DataArray,
radius: float = EARTH_RADIUS_METERS,
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Converts latitude and longitude on a spherical body to
three-dimensional Cartesian coordinates.
The Cartesian coordinate system is a right-handed system whose
origin lies at the center of a sphere. It is oriented with the
Z-axis passing through the poles and the X-axis passing through
the point lon = 0, lat = 0. This function is inverted by
:func:`cartesian_to_spherical`.
Parameters
----------
lon : array-like
An N-d array of longitudes in degrees.
lat : array-like
An N-d array of latitudes in degrees.
radius: float, optional
The radius of the spherical body in meters. The default assumes the Earth with
EARTH_RADIUS_METERS = 6.3781e6.
Returns
-------
x : float or array-like
x-coordinates in 3D in meters.
y : float or array-like
y-coordinates in 3D in meters.
z : float or array-like
z-coordinates in 3D in meters.
Examples
--------
>>> spherical_to_cartesian(np.array([0, 45]), np.array([0, 45]))
(array([6378100., 3189050.]),
array([ 0., 3189050.]),
array([ 0. , 4509997.76108592]))
>>> spherical_to_cartesian(np.array([0, 45, 90]), np.array([0, 90, 180]), radius=1)
(array([ 1.00000000e+00, 4.32978028e-17, -6.12323400e-17]),
array([ 0.00000000e+00, 4.32978028e-17, -1.00000000e+00]),
array([0.0000000e+00, 1.0000000e+00, 1.2246468e-16]))
>>> x, y, z = spherical_to_cartesian(np.array([0, 5]), np.array([0, 5]))
Raises
------
AttributeError
If ``lon`` and ``lat`` are not NumPy arrays.
See Also
--------
:func:`cartesian_to_spherical`
"""
lonr, latr = np.deg2rad(lon), np.deg2rad(lat)
x = radius * np.cos(latr) * np.cos(lonr)
y = radius * np.cos(latr) * np.sin(lonr)
z = radius * np.sin(latr)
return x, y, z
[docs]
def cartesian_to_spherical(
x: float | np.ndarray | xr.DataArray,
y: float | np.ndarray | xr.DataArray,
z: float | np.ndarray | xr.DataArray,
) -> tuple[np.ndarray, np.ndarray]:
"""Converts Cartesian three-dimensional coordinates to latitude and longitude on a
spherical body.
The Cartesian coordinate system is a right-handed system whose
origin lies at the center of the sphere. It is oriented with the
Z-axis passing through the poles and the X-axis passing through
the point lon = 0, lat = 0. This function is inverted by `spherical_to_cartesian`.
Parameters
----------
x : float or array-like
x-coordinates in 3D.
y : float or array-like
y-coordinates in 3D.
z : float or array-like
z-coordinates in 3D.
Returns
-------
lon : float or array-like
An N-d array of longitudes in degrees in range [-180, 180].
lat : float or array-like
An N-d array of latitudes in degrees.
Examples
--------
>>> x = EARTH_RADIUS_METERS * np.cos(np.deg2rad(45))
>>> y = EARTH_RADIUS_METERS * np.cos(np.deg2rad(45))
>>> z = 0 * x
>>> cartesian_to_spherical(x, y, z)
(44.99999999999985, 0.0)
``cartesian_to_spherical`` is inverted by ``spherical_to_cartesian``:
>>> x, y, z = spherical_to_cartesian(np.array([45]),np.array(0))
>>> cartesian_to_spherical(x, y, z)
(array([45.]), array([0.]))
Raises
------
AttributeError
If ``x``, ``y``, and ``z`` are not NumPy arrays.
See Also
--------
:func:`spherical_to_cartesian`
"""
R = np.sqrt(x**2 + y**2 + z**2)
x /= R
y /= R
z /= R
with np.errstate(divide="ignore"):
lon = np.where(
np.logical_and(x == 0, y == 0),
0,
recast_lon180(np.rad2deg(np.imag(np.log(x + 1j * y)))),
)
lat = np.rad2deg(np.arcsin(z))
return lon, lat
[docs]
def cartesian_to_tangentplane(
u: float | np.ndarray,
v: float | np.ndarray,
w: float | np.ndarray,
longitude: float | np.ndarray,
latitude: float | np.ndarray,
) -> tuple[float, float] | tuple[np.ndarray, np.ndarray]:
"""
Project a three-dimensional Cartesian vector on a plane tangent to
a spherical Earth.
The Cartesian coordinate system is a right-handed system whose
origin lies at the center of a sphere. It is oriented with the
Z-axis passing through the north pole at lat = 90, the X-axis passing through
the point lon = 0, lat = 0, and the Y-axis passing through the point lon = 90,
lat = 0.
Parameters
----------
u : float or np.ndarray
First component of Cartesian vector.
v : float or np.ndarray
Second component of Cartesian vector.
w : float or np.ndarray
Third component of Cartesian vector.
longitude : float or np.ndarray
Longitude in degrees of tangent point of plane.
latitude : float or np.ndarray
Latitude in degrees of tangent point of plane.
Returns
-------
up: float or np.ndarray
First component of projected vector on tangent plane (positive eastward).
vp: float or np.ndarray
Second component of projected vector on tangent plane (positive northward).
Raises
------
Warning
Raised if the input latitude is not in the expected range [-90, 90].
Examples
--------
>>> u, v = cartesian_to_tangentplane(1, 1, 1, 45, 90)
See Also
--------
:func:`tangentplane_to_cartesian`
"""
if np.any(latitude < -90) or np.any(latitude > 90):
warnings.warn("Input latitude outside of range [-90,90].")
phi = np.radians(latitude)
theta = np.radians(longitude)
u_projected = v * np.cos(theta) - u * np.sin(theta)
v_projected = (
w * np.cos(phi)
- u * np.cos(theta) * np.sin(phi)
- v * np.sin(theta) * np.sin(phi)
)
# JML says vh = w.*cos(phi)-u.*cos(theta).*sin(phi)-v.*sin(theta).*sin(phi) but vh=w./cos(phi) is the same
return u_projected, v_projected
[docs]
def tangentplane_to_cartesian(
up: float | np.ndarray,
vp: float | np.ndarray,
longitude: float | np.ndarray,
latitude: float | np.ndarray,
) -> tuple[float, float, float] | tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Return the three-dimensional Cartesian components of a vector contained in
a plane tangent to a spherical Earth.
The Cartesian coordinate system is a right-handed system whose
origin lies at the center of a sphere. It is oriented with the
Z-axis passing through the north pole at lat = 90, the X-axis passing through
the point lon = 0, lat = 0, and the Y-axis passing through the point lon = 90,
lat = 0.
Parameters
----------
up: float or np.ndarray
First component of vector on tangent plane (positive eastward).
vp: float or np.ndarray
Second component of vector on tangent plane (positive northward).
longitude : float or np.ndarray
Longitude in degrees of tangent point of plane.
latitude : float or np.ndarray
Latitude in degrees of tangent point of plane.
Returns
-------
u : float or np.ndarray
First component of Cartesian vector.
v : float or np.ndarray
Second component of Cartesian vector.
w : float or np.ndarray
Third component of Cartesian vector.
Examples
--------
>>> u, v, w = tangentplane_to_cartesian(1, 1, 45, 90)
Notes
-----
This function is inverted by :func:`cartesian_to_tangetplane`.
See Also
--------
:func:`cartesian_to_tangentplane`
"""
phi = np.radians(latitude)
theta = np.radians(longitude)
u = -up * np.sin(theta) - vp * np.sin(phi) * np.cos(theta)
v = up * np.cos(theta) - vp * np.sin(phi) * np.sin(theta)
w = vp * np.cos(phi)
return u, v, w
[docs]
def coriolis_frequency(
latitude: float | np.ndarray,
) -> float | np.ndarray:
"""
Return the Coriolis frequency or commonly known `f` parameter in geophysical fluid dynamics.
Parameters
----------
latitude : float or np.ndarray
Latitude in degrees.
Returns
-------
f : float or np.ndarray
Signed Coriolis frequency in radian per seconds.
Examples
--------
>>> f = coriolis_frequency(np.array([0, 45, 90]))
"""
f = 2 * EARTH_ROTATION_RATE * np.sin(np.radians(latitude))
return f