clouddrift.datasets.glad#
- clouddrift.datasets.glad(decode_times: bool = True) Dataset[source]#
- Returns the Grand LAgrangian Deployment (GLAD) dataset as a ragged array Xarray dataset. - The function will first look for the ragged-array dataset on the local filesystem. If it is not found, the dataset will be downloaded using the corresponding adapter function and stored for later access. - The upstream data is available at https://doi.org/10.7266/N7VD6WC8. - Parameters#- decode_timesbool, optional
- If True, decode the time coordinate into a datetime object. If False, the time coordinate will be an int64 or float64 array of increments since the origin time indicated in the units attribute. Default is True. 
 - Returns#- xarray.Dataset
- GLAD dataset as a ragged array 
 - Examples#- >>> from clouddrift.datasets import glad >>> ds = glad() >>> ds <xarray.Dataset> Dimensions: (obs: 1602883, traj: 297) Coordinates: time (obs) datetime64[ns] ... id (traj) object ... Data variables: latitude (obs) float32 ... longitude (obs) float32 ... position_error (obs) float32 ... u (obs) float32 ... v (obs) float32 ... velocity_error (obs) float32 ... rowsize (traj) int64 ... Attributes: title: GLAD experiment CODE-style drifter trajectories (low-pass f... institution: Consortium for Advanced Research on Transport of Hydrocarbo... source: CODE-style drifters history: Downloaded from https://data.gulfresearchinitiative.org/dat... references: Özgökmen, Tamay. 2013. GLAD experiment CODE-style drifter t... - Reference#- Özgökmen, Tamay. 2013. GLAD experiment CODE-style drifter trajectories (low-pass filtered, 15 minute interval records), northern Gulf of Mexico near DeSoto Canyon, July-October 2012. Distributed by: Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M University–Corpus Christi. doi:10.7266/N7VD6WC8 
