clouddrift.ragged.ragged_to_regular#
- clouddrift.ragged.ragged_to_regular(ragged: ndarray | Series | DataArray, rowsize: list | ndarray | Series | DataArray, fill_value: float = nan) ndarray[source]#
- Convert a ragged array to a two-dimensional array such that each contiguous segment of a ragged array is a row in the two-dimensional array. Each row of the two-dimensional array is padded with NaNs as needed. The length of the first dimension of the output array is the length of - rowsize. The length of the second dimension is the maximum element of- rowsize.- Note: Although this function accepts parameters of type - xarray.DataArray, passing NumPy arrays is recommended for performance reasons.- Parameters#- raggednp.ndarray or pd.Series or xr.DataArray
- A ragged array. 
- rowsizelist or np.ndarray[int] or pd.Series or xr.DataArray[int]
- The size of each row in the ragged array. 
- fill_valuefloat, optional
- Fill value to use for the trailing elements of each row of the resulting regular array. 
 - Returns#- np.ndarray
- A two-dimensional array. 
 - Examples#- By default, the fill value used is NaN: - >>> ragged_to_regular(np.array([1, 2, 3, 4, 5]), np.array([2, 1, 2])) array([[ 1., 2.], [ 3., nan], [ 4., 5.]]) - You can specify an alternative fill value: - >>> ragged_to_regular(np.array([1, 2, 3, 4, 5]), np.array([2, 1, 2]), fill_value=999) array([[ 1, 2], [ 3, 999], [ 4, 5]]) - See Also#
