Installation#
Required dependencies#
CloudDrift requires the following dependencies:
- python (3.10 or later) 
- aiohttp (3.8.4 or later) 
- awkward (2.0.0 or later) 
- fsspec (2022.3.0 or later) 
- netcdf4 (1.6.4 or later) 
- h5netcdf (1.3.0 or later) 
- numpy (1.22.4 or later) 
- pandas (1.3.4 or later) 
- pyarrow (8.0.0 or later) 
- tqdm (4.64.0 or later) 
- requests (2.31.0 or later) 
- scipy (1.11.2 or later) 
- xarray (2023.5.0 or later) 
- zarr (2.14.2 or later) 
- tenacity (8.2.3 or later) 
if you install CloudDrift using pip or Conda, these dependencies will be installed automatically.
Optional dependencies#
For plotting#
For development and testing#
For building the documentation#
Note: If you are using pip to install xarray, optional dependencies can be installed by specifying extras, such as:
pip install clouddrift[plotting] clouddrift[dev] clouddrift[docs]
There is also clouddrift[all] to install automatically all optional dependencies.
Installation instructions#
You can install the latest release of CloudDrift using pip or Conda. You can also install the latest development (unreleased) version from GitHub.
pip#
In your virtual environment, type:
pip install clouddrift
To install optional dependencies needed by the clouddrift.plotting module,
type:
pip install clouddrift[plotting]
Conda#
First add conda-forge to your channels in your Conda environment:
conda config --add channels conda-forge
conda config --set channel_priority strict
then install CloudDrift:
conda install clouddrift
To install optional dependencies needed by the clouddrift.plotting module,
type:
conda install matplotlib cartopy
Developers#
If you need the latest development version, get it from GitHub using pip:
pip install git+https://github.com/Cloud-Drift/clouddrift
Running tests#
To run the tests, you need to first download the CloudDrift source code from GitHub and install it in your virtual environment:
git clone https://github.com/cloud-drift/clouddrift
cd clouddrift
python3 -m venv venv
source venv/bin/activate
pip install .
Then, run the tests like this:
python -m unittest tests/*.py
A quick how-to guide is provided on the Usage page.
