clouddrift.sphere#
This module provides functions for spherical geometry calculations.
Functions
|
Return elementwise initial (forward) bearing in radians from arrays of latitude and longitude in degrees, based on the spherical law of cosines. |
|
Converts Cartesian three-dimensional coordinates to latitude and longitude on a spherical body. |
|
Project a three-dimensional Cartesian vector on a plane tangent to a spherical Earth. |
|
Return the Coriolis frequency or commonly known f parameter in geophysical fluid dynamics. |
|
Return the cumulative great circle distance in meters along a sequence of geographical locations. |
|
Return elementwise great circle distance in meters between one or more points from arrays of their latitudes and longitudes, using the Haversine formula. |
|
Convert Cartesian coordinates on a plane to spherical coordinates. |
|
Return elementwise new position in degrees from arrays of latitude and longitude in degrees, distance in meters, and bearing in radians, based on the spherical law of cosines. |
|
Recast (convert) longitude values to a selected range of 360 degrees starting from |
|
Recast (convert) longitude values to the range [-180, 180[. |
|
Recast (convert) longitude values to the range [0, 360[. |
|
Convert spherical coordinates to a tangent (Cartesian) plane. |
|
Converts latitude and longitude on a spherical body to |
|
Return the three-dimensional Cartesian components of a vector contained in a plane tangent to a spherical Earth. |
- clouddrift.sphere.bearing(lon1: float | list | ndarray | DataArray, lat1: float | list | ndarray | DataArray, lon2: float | list | ndarray | DataArray, lat2: float | list | ndarray | DataArray) float | ndarray [source]#
Return elementwise initial (forward) bearing in radians from arrays of latitude and longitude in degrees, based on the spherical law of cosines.
The formula is:
θ = atan2(cos φ1 ⋅ sin φ2 - sin φ1 ⋅ cos φ2 ⋅ cos Δλ, sin Δλ ⋅ cos φ2)
where (φ, λ) is (lat, lon) and θ is bearing, all in radians. Bearing is defined as zero toward East and positive counterclockwise.
Parameters#
- lon1float or array-like
Longitudes of the first set of points, in degrees
- lat1float or array-like
Latitudes of the first set of points, in degrees
- lon2float or array-like
Longitudes of the second set of points, in degrees
- lat2float or array-like
Latitudes of the second set of points, in degrees
Returns#
- thetafloat or np.ndarray
Bearing angles in radians
Examples#
Calculate the bearing of one degree longitude on the equator:
>>> bearing(0, 0, 1, 0) 0.0
Calculate the bearing of 10 degrees longitude at 45-degrees North latitude:
>>> bearing(0, 45, 10, 45) 0.06178508761798218
- clouddrift.sphere.cartesian_to_spherical(x: float | ndarray | DataArray, y: float | ndarray | DataArray, z: float | ndarray | DataArray) tuple[ndarray, ndarray] [source]#
Converts Cartesian three-dimensional coordinates to latitude and longitude on a spherical body.
The Cartesian coordinate system is a right-handed system whose origin lies at the center of the sphere. It is oriented with the Z-axis passing through the poles and the X-axis passing through the point lon = 0, lat = 0. This function is inverted by spherical_to_cartesian.
Parameters#
- xfloat or array-like
x-coordinates in 3D.
- yfloat or array-like
y-coordinates in 3D.
- zfloat or array-like
z-coordinates in 3D.
Returns#
- lonfloat or array-like
An N-d array of longitudes in degrees in range [-180, 180].
- latfloat or array-like
An N-d array of latitudes in degrees.
Examples#
>>> x = EARTH_RADIUS_METERS * np.cos(np.deg2rad(45)) >>> y = EARTH_RADIUS_METERS * np.cos(np.deg2rad(45)) >>> z = 0 * x >>> cartesian_to_spherical(x, y, z) (44.99999999999985, 0.0)
cartesian_to_spherical
is inverted byspherical_to_cartesian
:>>> x, y, z = spherical_to_cartesian(np.array([45]),np.array(0)) >>> cartesian_to_spherical(x, y, z) (array([45.]), array([0.]))
Raises#
- AttributeError
If
x
,y
, andz
are not NumPy arrays.
See Also#
- clouddrift.sphere.cartesian_to_tangentplane(u: float | ndarray, v: float | ndarray, w: float | ndarray, longitude: float | ndarray, latitude: float | ndarray) tuple[float, float] | tuple[ndarray, ndarray] [source]#
Project a three-dimensional Cartesian vector on a plane tangent to a spherical Earth.
The Cartesian coordinate system is a right-handed system whose origin lies at the center of a sphere. It is oriented with the Z-axis passing through the north pole at lat = 90, the X-axis passing through the point lon = 0, lat = 0, and the Y-axis passing through the point lon = 90, lat = 0.
Parameters#
- ufloat or np.ndarray
First component of Cartesian vector.
- vfloat or np.ndarray
Second component of Cartesian vector.
- wfloat or np.ndarray
Third component of Cartesian vector.
- longitudefloat or np.ndarray
Longitude in degrees of tangent point of plane.
- latitudefloat or np.ndarray
Latitude in degrees of tangent point of plane.
Returns#
- up: float or np.ndarray
First component of projected vector on tangent plane (positive eastward).
- vp: float or np.ndarray
Second component of projected vector on tangent plane (positive northward).
Raises#
- Warning
Raised if the input latitude is not in the expected range [-90, 90].
Examples#
>>> u, v = cartesian_to_tangentplane(1, 1, 1, 45, 90)
See Also#
- clouddrift.sphere.coriolis_frequency(latitude: float | ndarray) float | ndarray [source]#
Return the Coriolis frequency or commonly known f parameter in geophysical fluid dynamics.
Parameters#
- latitudefloat or np.ndarray
Latitude in degrees.
Returns#
- ffloat or np.ndarray
Signed Coriolis frequency in radian per seconds.
Examples#
>>> f = coriolis_frequency(np.array([0, 45, 90]))
- clouddrift.sphere.cumulative_distance(longitude: list | ndarray | DataArray, latitude: list | ndarray | DataArray) ndarray [source]#
Return the cumulative great circle distance in meters along a sequence of geographical locations.
Parameters#
- latitudearray-like
Latitude sequence, in degrees.
- longitudearray-like
Longitude sequence, in degrees.
Returns#
- outnp.ndarray
Cumulative distance.
See Also#
Examples#
Calculate the cumulative distance in meters along a path of three points:
>>> cumulative_distance(np.array([0, 1, 2]), np.array([0, 1, 2])) array([ 0. , 157424.62387233, 314825.27182116])
- clouddrift.sphere.distance(lon1: float | list | ndarray | DataArray, lat1: float | list | ndarray | DataArray, lon2: float | list | ndarray | DataArray, lat2: float | list | ndarray | DataArray) float | ndarray [source]#
Return elementwise great circle distance in meters between one or more points from arrays of their latitudes and longitudes, using the Haversine formula.
d = 2⋅r⋅asin √[sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)]
where (φ, λ) is (lat, lon) in radians and r is the radius of the sphere in meters.
Parameters#
- lon1np.ndarray
Longitudes of the first set of points, in degrees
- lat1np.ndarray
Latitudes of the first set of points, in degrees
- lon2np.ndarray
Longitudes of the second set of points, in degrees
- lat2np.ndarray
Latitudes of the second set of points, in degrees
Returns#
- outnp.ndarray
Great circle distance
Examples#
Calculate the distance of one degree longitude on the equator:
>>> distance(0, 0, 0, 1) 111318.84502145034
Calculate the distance of one degree longitude at 45-degrees North latitude:
>>> distance(0, 45, 1, 45) 78713.81064540472
You can also pass array-like inputs to calculate an array of distances:
>>> distance([0, 0], [0, 45], [0, 1], [1, 45]) array([111318.84502145, 78713.8106454 ])
- clouddrift.sphere.plane_to_sphere(x: ndarray, y: ndarray, lon_origin: float = 0, lat_origin: float = 0) tuple[ndarray, ndarray] [source]#
Convert Cartesian coordinates on a plane to spherical coordinates.
The arrays of input zonal and meridional displacements
x
andy
are assumed to follow a contiguous trajectory. The spherical coordinate of each successive point is determined by following a great circle path from the previous point. The spherical coordinate of the first point is determined by following a great circle path from the origin, by default (0, 0).The output arrays have the same floating-point output type as the input.
If projecting multiple trajectories onto the same plane, use
apply_ragged()
for highest accuracy.Parameters#
- xnp.ndarray
An N-d array of zonal displacements in meters
- ynp.ndarray
An N-d array of meridional displacements in meters
- lon_originfloat, optional
Origin longitude of the tangent plane in degrees, default 0
- lat_originfloat, optional
Origin latitude of the tangent plane in degrees, default 0
Returns#
- lonnp.ndarray
Longitude in degrees
- latnp.ndarray
Latitude in degrees
Examples#
>>> plane_to_sphere(np.array([0., 0.]), np.array([0., 1000.])) (array([0.00000000e+00, 5.50062664e-19]), array([0. , 0.0089832]))
You can also specify an origin longitude and latitude:
>>> plane_to_sphere(np.array([0., 0.]), np.array([0., 1000.]), lon_origin=1, lat_origin=0) (array([1., 1.]), array([0. , 0.0089832]))
Raises#
- AttributeError
If
x
andy
are not NumPy arrays
See Also#
- clouddrift.sphere.position_from_distance_and_bearing(lon: float, lat: float, distance: float, bearing: float) tuple[float, float] [source]#
Return elementwise new position in degrees from arrays of latitude and longitude in degrees, distance in meters, and bearing in radians, based on the spherical law of cosines.
The formula is:
φ2 = asin( sin φ1 ⋅ cos δ + cos φ1 ⋅ sin δ ⋅ cos θ ) λ2 = λ1 + atan2( sin θ ⋅ sin δ ⋅ cos φ1, cos δ − sin φ1 ⋅ sin φ2 )
where (φ, λ) is (lat, lon) and θ is bearing, all in radians. Bearing is defined as zero toward East and positive counterclockwise.
Parameters#
- lonfloat
Longitude of the first set of points, in degrees
- latfloat
Latitude of the first set of points, in degrees
- distancearray_like
Distance in meters
- bearingarray_like
Bearing angles in radians
Returns#
- lon2array_like
Latitudes of the second set of points, in degrees, in the range [-90, 90]
- lat2array_like
Longitudes of the second set of points, in degrees, in the range [-180, 180]
Examples#
Calculate the position of one degree longitude distance on the equator:
>>> position_from_distance_and_bearing(0, 0, 111318.84502145034, 0) (1.0, 0.0)
Calculate the position of one degree latitude distance from 45 degrees North latitude:
>>> position_from_distance_and_bearing(0, 45, 111318.84502145034, np.pi / 2) (8.81429402840006e-17, 45.99999999999999)
- clouddrift.sphere.recast_lon(lon: ndarray, lon0: float = -180) ndarray [source]#
Recast (convert) longitude values to a selected range of 360 degrees starting from
lon0
.Parameters#
- lonnp.ndarray or float
An N-d array of longitudes in degrees
- lon0float, optional
Starting longitude of the recasted range (default -180).
Returns#
- np.ndarray or float
Converted longitudes in the range [lon0, lon0+360[
Examples#
By default,
recast_lon
converts longitude values to the range [-180, 180[:>>> recast_lon(200) -160
>>> recast_lon(180) -180
The range of the output longitude is controlled by
lon0
. For example, withlon0 = 0
, the longitude values are converted to the range [0, 360[.>>> recast_lon(200, -180) -160
With
lon0 = 20
, longitude values are converted to range [20, 380], which can be useful to avoid cutting the major ocean basins.>>> recast_lon(10, 20) 370
See Also#
- clouddrift.sphere.recast_lon180(lon: ndarray) ndarray [source]#
Recast (convert) longitude values to the range [-180, 180[. This is a convenience wrapper around
recast_lon()
withlon0 = -180
.Parameters#
- lonnp.ndarray
An N-d array of longitudes in degrees
Returns#
- np.ndarray
Converted longitudes in the range [-180, 180[
Examples#
>>> recast_lon180(200) -160
>>> recast_lon180(-200) 160
See Also#
- clouddrift.sphere.recast_lon360(lon: ndarray) ndarray [source]#
Recast (convert) longitude values to the range [0, 360[. This is a convenience wrapper around
recast_lon()
withlon0 = 0
.Parameters#
- lonnp.ndarray
An N-d array of longitudes in degrees
Returns#
- np.ndarray
Converted longitudes in the range [0, 360[
Examples#
>>> recast_lon360(200) 200
>>> recast_lon360(-200) 160
See Also#
- clouddrift.sphere.sphere_to_plane(lon: ndarray, lat: ndarray, lon_origin: float = 0, lat_origin: float = 0) tuple[ndarray, ndarray] [source]#
Convert spherical coordinates to a tangent (Cartesian) plane.
The arrays of input longitudes and latitudes are assumed to be following a contiguous trajectory. The Cartesian coordinate of each successive point is determined by following a great circle path from the previous point. The Cartesian coordinate of the first point is determined by following a great circle path from the origin, by default (0, 0).
The output arrays have the same floating-point output type as the input.
If projecting multiple trajectories onto the same plane, use
apply_ragged()
for highest accuracy.Parameters#
- lonnp.ndarray
An N-d array of longitudes in degrees
- latnp.ndarray
An N-d array of latitudes in degrees
- lon_originfloat, optional
Origin longitude of the tangent plane in degrees, default 0
- lat_originfloat, optional
Origin latitude of the tangent plane in degrees, default 0
Returns#
- xnp.ndarray
x-coordinates on the tangent plane
- ynp.ndarray
y-coordinates on the tangent plane
Examples#
>>> sphere_to_plane(np.array([0., 1.]), np.array([0., 0.])) (array([ 0. , 111318.84502145]), array([0., 0.]))
You can also specify an origin longitude and latitude:
>>> sphere_to_plane(np.array([0., 1.]), np.array([0., 0.]), lon_origin=1, lat_origin=0) (array([-111318.84502145, 0. ]), array([1.36326267e-11, 1.36326267e-11]))
Raises#
- AttributeError
If
lon
andlat
are not NumPy arrays
See Also#
- clouddrift.sphere.spherical_to_cartesian(lon: float | list | ndarray | DataArray, lat: float | list | ndarray | DataArray, radius: float = 6378100.0) tuple[ndarray, ndarray, ndarray] [source]#
- Converts latitude and longitude on a spherical body to
three-dimensional Cartesian coordinates.
The Cartesian coordinate system is a right-handed system whose origin lies at the center of a sphere. It is oriented with the Z-axis passing through the poles and the X-axis passing through the point lon = 0, lat = 0. This function is inverted by
cartesian_to_spherical()
.Parameters#
- lonarray-like
An N-d array of longitudes in degrees.
- latarray-like
An N-d array of latitudes in degrees.
- radius: float, optional
The radius of the spherical body in meters. The default assumes the Earth with EARTH_RADIUS_METERS = 6.3781e6.
Returns#
- xfloat or array-like
x-coordinates in 3D in meters.
- yfloat or array-like
y-coordinates in 3D in meters.
- zfloat or array-like
z-coordinates in 3D in meters.
Examples#
>>> spherical_to_cartesian(np.array([0, 45]), np.array([0, 45])) (array([6378100., 3189050.]), array([ 0., 3189050.]), array([ 0. , 4509997.76108592]))
>>> spherical_to_cartesian(np.array([0, 45, 90]), np.array([0, 90, 180]), radius=1) (array([ 1.00000000e+00, 4.32978028e-17, -6.12323400e-17]), array([ 0.00000000e+00, 4.32978028e-17, -1.00000000e+00]), array([0.0000000e+00, 1.0000000e+00, 1.2246468e-16]))
>>> x, y, z = spherical_to_cartesian(np.array([0, 5]), np.array([0, 5]))
Raises#
- AttributeError
If
lon
andlat
are not NumPy arrays.
See Also#
- clouddrift.sphere.tangentplane_to_cartesian(up: float | ndarray, vp: float | ndarray, longitude: float | ndarray, latitude: float | ndarray) tuple[float, float, float] | tuple[ndarray, ndarray, ndarray] [source]#
Return the three-dimensional Cartesian components of a vector contained in a plane tangent to a spherical Earth.
The Cartesian coordinate system is a right-handed system whose origin lies at the center of a sphere. It is oriented with the Z-axis passing through the north pole at lat = 90, the X-axis passing through the point lon = 0, lat = 0, and the Y-axis passing through the point lon = 90, lat = 0.
Parameters#
- up: float or np.ndarray
First component of vector on tangent plane (positive eastward).
- vp: float or np.ndarray
Second component of vector on tangent plane (positive northward).
- longitudefloat or np.ndarray
Longitude in degrees of tangent point of plane.
- latitudefloat or np.ndarray
Latitude in degrees of tangent point of plane.
Returns#
- ufloat or np.ndarray
First component of Cartesian vector.
- vfloat or np.ndarray
Second component of Cartesian vector.
- wfloat or np.ndarray
Third component of Cartesian vector.
Examples#
>>> u, v, w = tangentplane_to_cartesian(1, 1, 45, 90)
Notes#
This function is inverted by
cartesian_to_tangetplane()
.See Also#