clouddrift.adapters.gdp.gdp6h.to_raggedarray#
- clouddrift.adapters.gdp.gdp6h.to_raggedarray(drifter_ids: list[int] | None = None, n_random_id: int | None = None, tmp_path: str = '/tmp/clouddrift/gdp6h') RaggedArray[source]#
- Download and process individual GDP 6-hourly files and return a RaggedArray instance with the data. - Parameters#- drifter_idslist[int], optional
- List of drifters to retrieve (Default: all) 
- n_random_idlist[int], optional
- Randomly select n_random_id drifter NetCDF files 
- tmp_pathstr, optional
- Path to the directory where the individual NetCDF files are stored (default varies depending on operating system; /tmp/clouddrift/gdp6h on Linux) 
 - Returns#- outRaggedArray
- A RaggedArray instance of the requested dataset 
 - Examples#- Invoke to_raggedarray without any arguments to download all drifter data from the 6-hourly GDP feed: - >>> from clouddrift.adapters.gdp.gdp6h import to_raggedarray >>> ra = to_raggedarray() - To download a random sample of 100 drifters, for example for development or testing, use the n_random_id argument: - >>> ra = to_raggedarray(n_random_id=100) - To download a specific list of drifters, use the drifter_ids argument: - >>> ra = to_raggedarray(drifter_ids=[54375, 114956, 126934]) - Finally, to_raggedarray returns a RaggedArray instance which provides a convenience method to emit a xarray.Dataset instance: - >>> ds = ra.to_xarray() - To write the ragged array dataset to a NetCDF file on disk, do - >>> ds.to_netcdf("gdp6h.nc", format="NETCDF4") - Alternatively, to write the ragged array to a Parquet file, first create it as an Awkward Array: - >>> arr = ra.to_awkward() >>> arr.to_parquet("gdp6h.parquet") 
